17 research outputs found

    Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms

    Get PDF
    We push the boundaries of electronic structure-based ab-initio molecular dynamics (AIMD) beyond 100 million atoms. This scale is otherwise barely reachable with classical force-field methods or novel neural network and machine learning potentials. We achieve this breakthrough by combining innovations in linear-scaling AIMD, efficient and approximate sparse linear algebra, low and mixed-precision floating-point computation on GPUs, and a compensation scheme for the errors introduced by numerical approximations. The core of our work is the non-orthogonalized local submatrix method (NOLSM), which scales very favorably to massively parallel computing systems and translates large sparse matrix operations into highly parallel, dense matrix operations that are ideally suited to hardware accelerators. We demonstrate that the NOLSM method, which is at the center point of each AIMD step, is able to achieve a sustained performance of 324 PFLOP/s in mixed FP16/FP32 precision corresponding to an efficiency of 67.7% when running on 1536 NVIDIA A100 GPUs.The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer JUWELS Booster at Jülich Supercomputing Centre (JSC). Additionally, we would like to thank for funding of this project by computing time provided by the Paderborn Center for Parallel Computing (PC), as well as the Federal Ministry of Education and Research (BMBF) and the state of North Rhine-Westphalia as part of the NHR Program. T.D.K. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 716142). T.D.K. and C.P. kindly acknowledge funding from Paderborn University’s research award for “GreenIT”. Finally, we thank Thomas Müller (JSC), Paul F. Baumeister (JSC), and Markus Hrywniak (NVIDIA) for valuable discussions.Peer Reviewed"Article signat per 11 autors/es: Robert Schade, Tobias Kenter, Hossam Elgabarty, Michael Lass, Ole Schütt, Alfio Lazzaro, Hans Pabst, Stephan Mohr, Jürg Hutter, Thomas D. Kühne, Christian Plessl"Postprint (published version

    Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms

    Full text link
    We push the boundaries of electronic structure-based ab-initio molecular dynamics (AIMD) beyond 100 million atoms. This scale is otherwise barely reachable with classical force-field methods or novel neural network and machine learning potentials. We achieve this breakthrough by combining innovations in linear-scaling AIMD, efficient and approximate sparse linear algebra, low and mixed-precision floating-point computation on GPUs, and a compensation scheme for the errors introduced by numerical approximations. The core of our work is the non-orthogonalized local submatrix method (NOLSM), which scales very favorably to massively parallel computing systems and translates large sparse matrix operations into highly parallel, dense matrix operations that are ideally suited to hardware accelerators. We demonstrate that the NOLSM method, which is at the center point of each AIMD step, is able to achieve a sustained performance of 324 PFLOP/s in mixed FP16/FP32 precision corresponding to an efficiency of 67.7% when running on 1536 NVIDIA A100 GPUs

    Materials Cloud, a platform for open computational science

    Full text link
    Materials Cloud is a platform designed to enable open and seamless sharing of resources for computational science, driven by applications in materials modelling. It hosts 1) archival and dissemination services for raw and curated data, together with their provenance graph, 2) modelling services and virtual machines, 3) tools for data analytics, and pre-/post-processing, and 4) educational materials. Data is citable and archived persistently, providing a comprehensive embodiment of the FAIR principles that extends to computational workflows. Materials Cloud leverages the AiiDA framework to record the provenance of entire simulation pipelines (calculations performed, codes used, data generated) in the form of graphs that allow to retrace and reproduce any computed result. When an AiiDA database is shared on Materials Cloud, peers can browse the interconnected record of simulations, download individual files or the full database, and start their research from the results of the original authors. The infrastructure is agnostic to the specific simulation codes used and can support diverse applications in computational science that transcend its initial materials domain.Comment: 19 pages, 8 figure

    The atomic simulation environment — a python library for working with atoms

    Get PDF
    The Atomic Simulation Environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simula- tions. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple "for-loop" construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations

    CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations

    Get PDF
    CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post–Hartree–Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension

    Roadmap on Electronic Structure Codes in the Exascale Era

    Get PDF
    Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing.Comment: Submitted as a roadmap article to Modelling and Simulation in Materials Science and Engineering; Address any correspondence to Vikram Gavini ([email protected]) and Danny Perez ([email protected]

    Machine Learning Adaptive Basis Sets for Efficient Large Scale Density Functional Theory Simulation

    No full text
    It is chemically intuitive that an optimal atom centered basis set must adapt to its atomic environment, for example by polarizing toward nearby atoms. Adaptive basis sets of small size can be significantly more accurate than traditional atom centered basis sets of the same size. The small size and well conditioned nature of these basis sets leads to large saving in computational cost, in particular in a linear scaling framework. Here, it is shown that machine learning can be used to predict such adaptive basis sets using local geometrical information only. As a result, various properties of standard DFT calculations can be easily obtained at much lower costs, including nuclear gradients. In our approach, a rotationally invariant parametrization of the basis is obtained by employing a potential anchored on neighboring atoms to ultimately construct a rotation matrix that turns a traditional atom centered basis set into a suitable adaptive basis set. The method is demonstrated using MD simulations of liquid water, where it is shown that minimal basis sets yield structural properties in fair agreement with basis set converged results, while reducing the computational cost in the best case by a factor of 200 and the required flops by 4 orders of magnitude. Already a very small training set yields satisfactory results as the variational nature of the method provides robustness.ISSN:1549-9618ISSN:1549-962
    corecore